氏 名

受	験	Ĭ.		
番	号			

解 答 用 紙 (理 科) その1 (医学部医学科)

1

(1) 大きさ <u>m v</u> ?	向き 人工衛星から地	L我の中心に向うむき 観測者)
$\frac{GMM}{r^2}$	$\sqrt{\frac{GM}{r}}$	$2\pi\sqrt{\frac{Y^3}{GM}}$
$-\frac{GMM}{2h}$	$\frac{T_0^2}{r^3} = \frac{4\pi^2}{GM}$	(7)
(8) \(\square 2 \mathref{gR} \)	(9) \[\frac{2l}{l+r} \]	$\sqrt{\frac{\pi^2 (\ell+r)^3}{26M}}$

	採	点	欄
1			

氏 名

受 験 番 号

解 答 用 紙 (理 科) その2 (医学部医学科)

2

BL (VCOAD	+ V'(co 0')
(2) 大きさ BL <u>VCの日 + V'cの日'</u> R+R'	12号
$mgsin\theta - (BL)^2$	VCu0+V'cu0 9' COSA
(4) (7) tan 0 tan 0	(a)
$\frac{mgR}{(BL)^2} \frac{sin\theta}{cos^2\theta}$	2R (mg tano)2
2R (mg tano)2	(8)

	採	点	欄	
2				

氏 名

受 験 番 号

解 答 用 紙 (理 科) その3 (医学部医学科)

3

	採	点	欄	
3				

氏名	

受験番号

解 答 用 紙(理科) その4 (医学部医学科)

4

(1) 問 1
(3), ④ 問 2 1)

(4. 1×10⁻³ mol/(L・s)

| 日 2 1)の計算過程
| H₂ I₂ HI
| 開始時 0. 60 0. 64 0
| 増加量 - x - x 2x
| 平衡時 0. 60 - x 0. 64 - x 2x=0. 96

これより x=0.48となり,平衡時のH₂,I₂の物質量は H₂:0.12 mol,I₂:0.16 mol

となる。したがって

 $K_c = [HI]^2 / [H_2] [I_2] = (0.96/V)^2 / \{(0.12/V) \times (0.16/V)\} = 48$

問 2 2) の計算過程

平衡時にはv₁=v₂なので

 $k_1[H_2][I_2]=k_2[HI]^2$

が成り立つ、よって

 $k_1 = k_2 [HI]^2 / [H_2] [I_2] = k_2 \times K_c = 4.32 \times 10^{-2} L/(mol \cdot s)$

反応開始時には

 $[H_2]$ =0.60/2=0.30 mol/L, $[I_2]$ =0.64/2=0.32 mol/L

なので

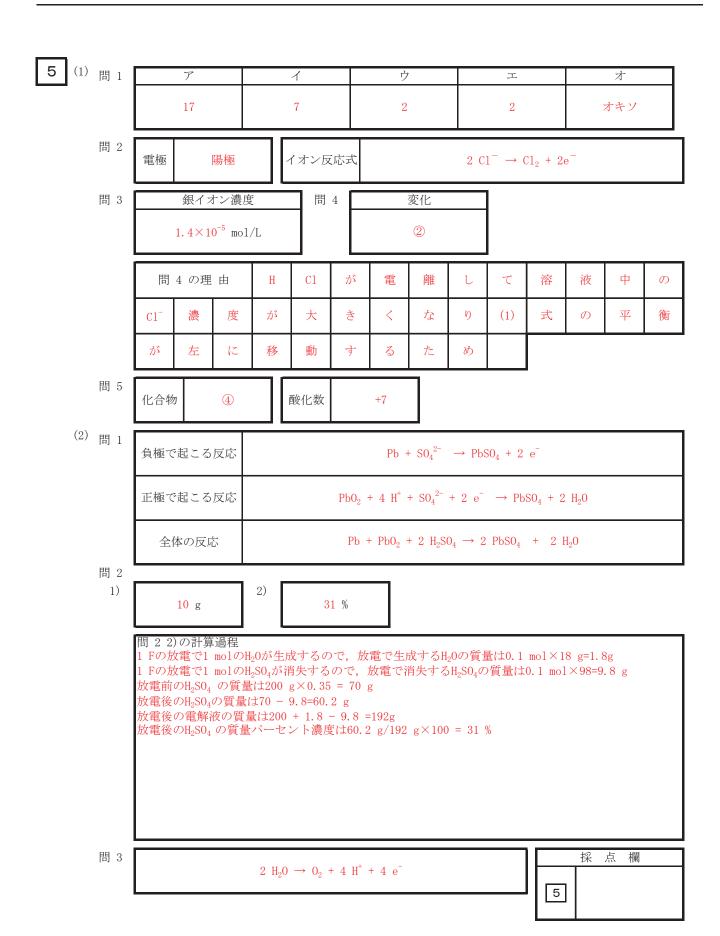
 $v_1 = k_1 [H_2] [I_2] = 4.32 \times 10^{-2} \times 0.30 \times 0.32 = 4.1 \times 10^{-3} \text{ mol/(L} \cdot \text{s)}$

問 3 H_2 I_2 HI 0. 20 mol 1.6 mol

 (2) 問 1
 問 2
 凝 固 熱 が 発 生 す る た め

問 3 لح 溶 媒 が 凝 古 す る で 溶 液 \mathcal{O} 濃 度 が 上 昇 下 大 凝 占 点 降 度 が き な る た

 問 4
 問 5
 凝固点が最も高い溶液の溶質
 凝固点が最も低い溶液の溶質


 ①
 ②

 ③

問 6 0.50 K 4 4

受験番号

解 答 用 紙(理科) その5 (医学部医学科)

解 答 用 紙(理科) その6 (医学部医学科)

6 (1)

問 1

問

1	D	I
	-CH ₂ -OH	O II CH ₃ CH ₂ -C-OH
	E	F
	酢酸	エタノール
	G	Н
	安息香酸	フェノール
1 2	A	В
	O -CH ₂ -O-C-CH ₃	O U —O—CH₂CH₃
	C	
	O _O_C_CH₂CH₃	

問 3	ベンゼンの一置換体であるカルボン酸	ベンゼンの二置換体であるカルボン酸
	2 種類	6 種類

(2)

イ, ウ, オ, カ, ケ, ス

採 点 欄

氏名

受験 番号

解 答 用 紙(理科) その7 (医学部医学科)

7 (1) 問 1 重合反応の名称 合成されている高分子化合物の例 付加重合 ①, ④ 3, 5 b 縮合重合 2 開環重合 問 2 イ 架橋, 3次元網目構造, 立体網目構造 熱硬化 熱可塑 オ エ マテリアル ケミカル 問 3 塩基触媒 酸触媒 ノボラック レゾール 問 4 尿素樹脂 メラミン樹脂 NH_2 NH₂ H₂N² NH₂ (2) 問 1 イ アミロース グリコーゲン マルトース マルターゼ 問 2 問 3 2, 3, 6 1, 4 問 4 官能基名 アルデヒド基 構造式 ÇH₂OH OH H H H OH 採 点 欄 HO OH7 Н